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Abstract Mexico and Central America are among the

most biodiverse regions on Earth, harboring many species

with high levels of interpopulation morphological and

genetic diversity. The mountainous topography of this

region contains isolated sky island habitats that have the

potential to promote speciation. This has been studied in

vertebrates, yet few studies have examined the phylogeo-

graphic and genetic structure of insect species encom-

passing this region. Here we investigate geographic

patterns of genetic and morphological divergence and

speciation among widespread populations of the highly

polymorphic bumble bee Bombus ephippiatus and its

closest relative B. wilmattae. We used DNA sequences

from a fragment of cytochrome oxidase I (COI), genotypes

for twelve microsatellite markers, and morphometric data

from wings to construct a well-supported inference of the

divergences among these taxa. We have found complex

patterns of genetic isolation and morphological divergence

within B. ephippiatus across its geographic range and

present evidence that B. ephippiatus comprises multiple

independent evolutionary lineages. The pattern of their

diversification corresponds to geographic and environ-

mental isolating mechanisms, including the Mexican

highlands, the lowlands of the Isthmus of Tehuantepec in

southern Mexico, the Nicaraguan Depression, the patchily

distributed volcanic ranges in Nuclear Central America and

Pleistocene glacial cycles. These results have important

implications for the development and distribution of B.

ephippiatus as a commercial pollinator in Mexico and

Central America.
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Introduction

Mexico and Central America are well known for their

biological complexity (Mittermeier et al. 2000). The great

biodiversity in this region is frequently attributed to its

location between two large continents, arising from biotic

interchange between North and South America. This region

is also a transition zone between the northern Nearctic and

southern Neotropical biogeographic regions (Heilprin

1887). Its volcanic topography has led to isolation and

speciation in birds (Cracraft and Prum 1988; Roy et al.

1997; Garcı́a-Moreno et al. 2006), mammals (Vrba 1993;

Sullivan et al. 2000; León-Paniagua et al. 2007), and her-

petofauna (Mulcahy et al. 2006; Castoe et al. 2009; Daza

et al. 2010). Many endemic forms have been restricted

within the last few million years to particular ecosystems,

such as montane pine-oak or cloud forests (Escalante et al.

1993; León-Paniagua et al. 2007; Kerhoulas and Arbogast

2010; Barber and Klicka 2010). For example, many bird

species restricted by ecological limits exist as a series of

isolated populations in islands of suitable habitat (Garcı́a-

Moreno et al. 2004).

There are two particularly notable lowland regions

within Mexico and Central America that have served as

geographic barriers between these montane sky island

habitats, preventing species movement. One of these bar-

riers is the Isthmus of Tehuantepec (IT) (Fig. 1), a conti-

nental strait ending in two plains. This large, narrow area of

low elevation with a hot, humid climate separates the

Sierra Madre del Sur of southern Mexico from the highland

regions of the Maya Block, a fault block encompassing

Mexico south of the IT through central Guatemala

(Gutiérrez-Garcı́a and Vázquez-Domı́nguez 2013). The IT

is proposed to be a major barrier to dispersal in toads

(Mulcahy et al. 2006), snakes (Castoe et al. 2009; Daza

et al. 2010), birds (Barber and Klicka 2010), and rodents

(Sullivan et al. 2000). The other significant barrier is the

Nicaraguan Depression (Fig. 1), which is a lowland

expanse separating the Chortis Block highlands of Hon-

duras and Nicaragua from the highlands of Costa Rica. The

Nicaraguan Depression is an important isolating mecha-

nism in snakes and rodents (Castoe et al. 2009; Daza et al.

2010; Gutiérrez-Garcı́a and Vázquez-Domı́nguez 2013).

The highlands of Mexico are also important geographic

barriers for many plant and animal taxa, especially during

more recent Pleistocene glacial cycles (Ornelas et al. 2013;

Mastretta-Yanes et al. 2015). North of the IT, there are four

distinct mountain ranges that have shaped the genetic

structure of the organisms that live within them: the Sierra

Madre Occidental, the Sierra Madre Oriental, the Trans-

Mexican Volcanic Belt and the Sierra Madre del Sur

(Fig. 1). South of the IT, there are four mountain

ecoregions: the mid-elevation Central American pine-oak

forest that extend into Guatemala and Honduras and the

high elevation Sierra Madre de Chiapas moist forest,

Chiapas montane forest, and Central American montane

forest (Fig. 1). These latter three ranges are partially sep-

arated by the Central American pine-oak forest and a

lowland region called the Central Depression (CD)

(Fig. 1), a barrier to hummingbirds and passerines (Ornelas

et al. 2013).

This pattern of high endemism and diversification across

Mexico and Central America via geological isolation has

likely affected insect diversity in the region. Biogeographic

patterns of some groups of beetles, for instance, suggest

that the uplift of montane regions in Central America

encouraged the southerly movement of Nearctic beetles,

while the tropical lowlands of Central America enabled

South American beetles to move northward after the

Panamanian land bridge connection *3 mya (Halffter

1987; Liebherr 1994; Lobo and Halffter 2000; Marshall

and Liehberr 2000; Morrone 2006). These studies have

generated numerous hypotheses to explain the diversifica-

tion of Mexican and Central American beetles, but the

explanations for how geological barriers could have shaped

diversification are constrained by reliance on species dis-

tribution data alone. Multi-locus phylogenetic and popu-

lation genetic analyses can clarify how evolutionary

divergence is shaped by historical events using gene

genealogies. Furthermore, to understand whether whole

communities respond similarly to the same historical

events and shared barriers, it is important to compare

patterns across diverse groups of taxa. To date, a small

amount of molecular data is available for insect species in

Mexico and Central America (beetles: Morse and Farrell

2005; Anducho-Reyes et al. 2008; Ruiz et al. 2010;

Baselga et al. 2011; Sánchez-Sánchez et al. 2012; true

bugs: Dorn et al. 2009; stingless bees: May-Itzá et al.

2010).

In both the Old and New World, bumble bees (Bombus)

have been the focus of intense molecular phylogenetic

(Koulianos and Schmid-Hempel 2000; Kawakita et al. 2004;

Ellis et al. 2005; Hines et al. 2006; Cameron et al. 2007;

Williams et al. 2011, 2012, 2015; Lecocq et al. 2011; Hines

and Williams 2012; Carolan et al. 2012; Bossert et al. 2016;

Françoso et al. 2016; Sheffield et al. 2016) and population

genetic analysis (Estoup et al. 1996; Widmer et al. 1998;

Widmer and Schmid-Hempel 1999; Chapman et al. 2003;

Shao et al. 2004; Ellis et al. 2006;Darvill et al. 2006; Schmid-

Hempel et al. 2007; Herrman et al. 2007; Lozier and

Cameron 2009; Kraus et al. 2009; Darvill et al. 2010;

Charman et al. 2010; Lye et al. 2011; Cameron et al. 2011;

Lozier et al. 2011; Kraus et al. 2011; Goulson et al. 2011;

Carvell et al. 2012; Jha and Kremen 2013; Lozier et al. 2013;

554 Conserv Genet (2017) 18:553–572

123



Maebe et al. 2013; Lecocq et al. 2013; Dreier et al. 2014;

Moreira et al. 2015; Jha 2015; Santos Júnior et al. 2015;

Huang et al. 2015; Lecocq et al. 2015a, b, c; Francisco et al.

2016). Despite the presence of nineteen different species

(Labougle 1990) of bumble bees in Mexico and Central

America, only a single study to date has explored the phy-

logeography of bumble bees in this region (Duennes et al.

2012). The phylogenetic patterns and known biogeographic

distributions of Bombus provide a rich background for

investigating the structure of inter- and intraspecific genetic

diversity in Mexico and Central America and for examining

whether Bombus diversification correlates temporally with

historical events associated with the speciation of vertebrate

and other insect taxa.

Bombus ephippiatus and B. wilmattae are a species

complex especially relevant for the study of Mexican and

Central American biodiversity. First, the estimated diver-

gence of these southern species from their North American

relative B. impatiens (*1 mya, Duennes et al. 2012) fits

within the pertinent timescale of recent geological and

climatic events in this region. Second, B. ephippiatus is

distributed widely throughout Mexico and Central America

and is found in diverse montane habitats (Duennes and

Vandame 2015), while B. wilmattae, of uncertain species

status (distinguished from B. ephippiatus primarily by the

presence of a band of yellow or white hairs on the anterior

pronotum near the head; Labougle et al. 1985; Labougle

1990; Williams 1998; Duennes et al. 2012), is restricted to

a relatively small geographic range in southern Mexico and

eastern Guatemala. These distributions allow comparative

studies of genetic diversity in widespread and restricted

populations. Third, B. ephippiatus is highly polymorphic

across its large range, exhibiting both a gradation in color

pattern and genetic diversity from north to south (Duennes

et al. 2012). Preliminary studies of the genetic diversity of

this group suggested five main lineages within B. ephip-

piatus and B. wilmattae: one lineage of B. ephippiatus

north of the IT, two sympatric lineages of B. ephippiatus

south of the IT through Honduras, one lineage of B.

ephippiatus in Costa Rica and a fifth lineage comprising B.

wilmattae, which was nested within B. ephippiatus

(Duennes et al. 2012). Overall, the widespread geographic

distribution of the B. ephippiatus-B. wilmattae species

group over a topologically complex region, its highly

polymorphic color pattern, and its genetic diversity suggest

the possibility of additional cryptic diversity.

Fig. 1 Map illustrating the distinct mountain regions that B. ephip-

piatus and B. wilmattae inhabit. There are four major mountains chains

north of the Isthmus of Tehuantepec (IT), three mountain ecoregions

south of the IT and north of the Nicaraguan Depression (ND), which are

further split in Mexico by the Central Depression (CD), and the

Talamancan montane forests south of the ND in Costa Rica and

Panama. All regions highlighted areWorldWildlife Federation (WWF)

recognized ecoregions (Olson et al. 2001). (Color figure online)
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The B. ephippiatus complex is of conservation concern

as it is currently under development as an alternative

commercial pollinator that could replace the non-native B.

impatiens sold extensively throughout Mexico and Guate-

mala for greenhouse and field crop pollination. The con-

tinued use of B. impatiens for commercial pollination in

Mexico and Central America poses threats to the popula-

tion health of native bumble bee species. These threats,

which have been indicated in other parts of the world as a

result of global intercontinental transport of non-native

Bombus, include competition for floral resources (Morales

et al. 2013) and spread of diseases (Arbetman et al. 2013;

Sachman-Ruiz et al. 2015). Because B. impatiens is sister

species to the B. ephippiatus-B. wilmattae complex

(Duennes et al. 2012), the threat of reproductive distur-

bance (Kondo et al. 2009) and inter-specific hybridization

(Yoon et al. 2009) is of particular concern. BioBest (http://

www.biobestgroup.com/) and Koppert Biological Systems

(https://www.koppert.com/), both pioneers in European

commercial bumble bee production, have facilities in

Mexico that produce and distribute B. impatiens throughout

Mexico and Central America; both companies are inter-

ested in producing B. ephippiatus as a native alternative

pollinator (Torres-Ruiz and Jones 2012). Moreover, twelve

independent breeders of B. ephippiatus across five states in

Mexico have formed an association with the goal of

developing this species as a sustainable crop pollinator

(Asociación Mexicana de Criadores de Abejorros Nativos,

A.C.). While B. ephippiatus appears to be a promising

native alternative to B. impatiens, its widespread com-

mercial use without understanding the taxonomic status

and population genetic structure could result in a homog-

enization of native population genetic diversity (Bourret

et al. 2011; Williams et al. 2012; Lecocq et al. 2016).

Here we describe how both montane and lowland bar-

riers across Mexico through Honduras (Fig. 1) have shaped

the genetic structure of the B. ephippiatus complex. We

add four additional microsatellite loci to the eight used by

Duennes et al. (2012) and add nearly 2000 new specimens

from across the range of this species complex, especially

from northern Mexico. We explore whether morphological

variation corresponds to genetic variation and isolation

using wing morphometric data from over 600 specimens.

We discuss possible geographic barriers and climatic

events that could have caused the observed patterns of

diversification within this group and provide an in-depth

comparison of the efficacy of the Bayesian assignment

programs STRUCTURE (Pritchard et al. 2000) and

GENELAND (Guillot et al. 2012). We also discuss taxo-

nomic consequences of this study and implications for the

trade of B. ephippiatus for commercial pollination in

Mexico and Central America.

Materials and methods

Taxa examined

Phylogenetic analysis

To resolve the basal relationships among the lineages in the

B. ephippiatus-B. wilmattae species complex, sequence

fragment data were collected from cytochrome oxidase I for

254 specimens spanning the group’s broad geographic dis-

tribution. One hundred and fifty one specimens fromMexico

and Guatemala were added to the 103 specimens previously

analyzed in Duennes et al. (2012). In total, 76 specimens of

B. wilmattae and 167 specimens of B. ephippiatus were

included in the analysis. Nine specimens of B. impatiens and

one specimen each of B. huntii and B. vosnesenskii were

selected as outgroup taxa. A list of all samples used for

phylogenetic analyses can be found in Online Resource 1.

Microsatellite analysis

To delimit distinct genetic groups within the B. ephippia-

tus-B. wilmattae complex, extensive sampling was con-

ducted throughout Mexico and Guatemala. Samples were

collected from one to three sites approximately three

kilometers apart within a single population. A maximum of

20 samples was collected from each population, and each

population sampled was at least 30 km apart. This

scheme was used to minimize repeated sampling of indi-

viduals from the same colony. Samples previously geno-

typed in Duennes et al. (2012) were also included and

genotyped at an additional 4 loci. In total, 1917 female

samples of B. ephippiatus and B. wilmattae were geno-

typed at 12 microsatellite loci (Online Resource 1).

Geometric morphometric analysis

To test whether genetic structure has shaped morphology in

this group, geometric morphometric data were collected

from dorsal left forewings of B. ephippiatus and B.

wilmattae. The wings were removed from 606 worker caste

specimens (Online Resource 1) across the distribution of

the species complex. Following Aytekin et al. (2007), 20

landmarks on the forewing were mapped and analyzed

(Online Resource 2, see details below).

Phylogenetic inference

Cytochrome oxidase I

An 811 base pair fragment of the cytochrome oxidase I

(COI) gene was amplified from 254 specimens (Online
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Resource 1) using the primers RevmtR and FormtR (used

in Duennes et al. 2012). These highly specific primers

minimized amplification of mitochondrial insertions into

the nuclear genome and span a variable region of the gene.

Other mitochondrial (cytochrome oxidase B; 16S ribosomal

RNA) and nuclear (Phosphoenolpyruvate carboxykinase,

[PEPCK]; carbamoyl-phosphate synthetase 2, aspartate

transcarbamylase, and dihydroorotase [CAD]) genes were

explored but lacked informative nucleotide variation

(Duennes et al. 2012 for nuclear genes; data not shown for

mitochondrial genes).

DNA extraction, PCR, and DNA sequencing

A single foreleg was used for DNA extraction to generate

template DNA for both COI amplification and

microsatellite genotyping. Tissue was digested and DNA

extracted in 150 lL of 5% Chelex� 100 resin (Bio-Rad,

Hercules, CA) and 3 lL of Proteinase K (20 mg/lL) for
60 min at 55 �C, 15 min at 99 �C, 1 min at 37 �C, and then
15 min at 99 �C using a thermocyler. Standard conditions

for PCR amplification were an initial denaturation step of

95 �C for 3 min; 35 cycles of denaturation for 60 s at

94 �C, annealing for 60 s at 48–57 �C, and elongation for

60 s at 72 �C, and a final extension of 3 min at 72 �C,
25 lL. PCR reactions were conducted in 5 lL of 5X

GoTaq� reaction buffer (Promega, Fitchburg, WI),

1.875 mM MgCl2, 0.2 mM each dNTP, 10lL of each

primer and 0.4 U of GoTaq� DNA polymerase (Promega)

with 2.5 lL of genomic DNA. PCR products were purified

using ExoSAP-IT� (Affymetrix, Santa Clara, CA).

BigDye� Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems, Foster City, CA) was used for sequencing of

PCR products with the corresponding primers. Sequencing

was performed at the W.M. Keck Center for Comparative

and Functional Genomics at the University of Illinois using

an ABI 3730XL (Applied Biosystems) capillary sequencer.

Tissue was obtained from the specimens by removing one

of the forelegs. All samples are housed either at the

University of Illinois (stored in 95–100% ethanol at 4 �C)
or at El Colegio de la Frontera Sur (ECOSUR) (pinned and

dried).

Alignment and phylogenetic analysis

DNA sequences were edited in Geneious 8.1.7 (Biomatters

Ltd) and aligned using MUSCLE (Edgar 2004). The

HKY ? I model was selected for Bayesian phylogenetic

inference based on Bayesian information criteria (BIC)

calculated by jModelTest 2.1.7 (Darriba et al. 2012). For

phylogenetic inference, the aligned COI sequences were

analyzed using MrBayes 3.2.5 (Ronquist et al. 2012) with

10,000,000 generations, four chains, flat priors and

sampling trees every 1,000 generations. Log-likelihood

plots of the two parallel runs from one MrBayes analysis

were compared using Tracer 1.6.0 (Rambaut et al. 2014)

and discarded as burnin the first 2,500,000 generations

(2500 trees). The two runs were combined and the posterior

probability support for each node of the consensus tree was

calculated. Pairwise FST values between clades and average

number of nucleotide differences within and between

clades from the Bayesian phylogeny were calculated with

DnaSPv5.10.1 (Librado and Rozas 2009). In addition to

using Bayesian methods to reconstruct relationships, a

parsimony haplotype network was generated with TCS1.21

(Clement et al. 2000) using the default parsimony con-

nection limit of the program.

Species delimitation

To establish a threshold for species determination with

sequence data, the general mixed Yule-coalescent model

(GMYC) was implemented in a Bayesian framework with

the program bGMYC (Reid and Carstens 2012). First,

unique haplotypes were identified with COLLAPSE 1.2

(accessed 2016: http://www.softpedia.com/get/Science-

CAD/Collapse.shtml); individuals with identical haplo-

types were subsequently removed so that only a single

representative of each haplotype remained in the dataset

(N = 48 remaining taxa). This reduced dataset was also

run through jModelTest 2.1.7 (Darriba et al. 2012); Baye-

sian information criteria (BIC) selected HKY ? I as the

best fit model for the data. To build ultrametric trees for

bGMYC, BEAST 1.8.3 (Drummond et al. 2012) was run

with the uncorrelated lognormal clock model and constant-

size coalescent process tree-speciation prior for 10,000,000

generations, sampling trees every 1000 generations. To

account for phylogenetic uncertainty when examining the

GMYC model, the last 100 trees generated were used to

run bGMYC. The analysis was run for 50,000 generations

with a burnin of 40,000 generations and a thinning interval

of 100. The MCMC chain was visually inspected for proper

mixing and stationarity to determine the number of gen-

erations to run and to set the burnin.

Microsatellite analysis

Microsatellite genotyping

To identify areas of restricted gene flow and genetic

structure within this widespread species group, 1917

female specimens were genotyped at twelve microsatellite

loci using the following published PCR primers: B10,

B124, B126 (Estoup et al. 1995); B96, B100, B131, B132

(Estoup et al. 1996); BT10, BL13, BT30, BT28 (Reber-

Funk et al. 2006); BTMS0125 (Stolle et al. 2009). A total
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of twenty microsatellite loci were tested for use with B.

ephippiatus and B. wilmattae, but these twelve markers

were selected for their consistent amplification across

multiple Bombus species. The amplification of the twelve

loci chosen was also tested randomly via re-genotyping a

subset of samples to look for genotyping errors, none of

which were detected. To examine the possible presence of

null alleles in our dataset, GENEPOP 4.2 (Rousset 2008)

was used to test for deviations from Hardy–Weinberg

equilibrium (HWE) via heterozygote deficiency. Markov

chain parameters for all tests were set to 1000 for

dememorization at 100 batches with 1000 iterations per

batch. We tested all populations with sample sizes greater

than ten, as well as all loci. No populations deviated sig-

nificantly from HWE (P[ 0.01). Of the twelve loci

selected, only locus B10 displayed heterozygote deficiency

(P = 0.0011); its removal from the dataset did not affect

population inference results. These HWE tests as well as

the amplification consistency of the selected loci suggest

the problem of null allleles is not a strong factor in this

dataset. PCR reaction protocols and thermal cycling con-

ditions are described in Lozier and Cameron (2009). Final

PCR products with flouresecently-tagged probes were

purified and genotyped at the high throughput DNA facil-

ity, W.M. Keck Center at the University of Illinois using

ABI 3730xl capillary DNA analyzer (Applied Biosystems).

Genotypes were scored manually with the Geneious

Microsatellite Plugin 1.4 in Geneious 8.1.7 (Biomatters

Ltd) using the same allele bin-set for all species. A random

subset of samples was genotyped a second time to check

accuracy of allele identification; no inconsistencies were

observed. For consistency between datasets, all of the

microsatellite genotypes for B. ephippiatus and B.

wilmattae taken from Duennes et al. (2012) were re-scored

with the Geneious Microsatellite Plugin 1.4 in Geneious

8.1.7 (Biomatters Ltd) for this study (Online Resource 1).

The same thermocyclers and sequencing machines were

used for amplification and sequencing in this study as in

Duennes et al. (2012).

Population differentiation

All microsatellite data were tested for population differ-

entiation using STRUCTURE 2.3.4 (Pritchard et al. 2000).

Multiple analyses were run with different groups of sam-

ples because it is known that the assignment of individuals

to genetic groups by STRUCTURE can be strongly influ-

enced by sample size (Kalinowski 2011). The following

groups of samples were assessed for the following K val-

ues: all samples (N = 1917; K = 2–7), only the samples

that have also been sequenced for the COI fragment

(N = 225; K = 2–7), equal sample sizes for each region

(Sierra Madre Occidental, Sierra Madre Oriental, Trans-

Mexican Volcanic Belt, Sierra Madre del Sur, two for the

sympatric groups south of the IT through Honduras, Costa

Rica; N = 119; K = 2–7), only the samples from the

Mexican state of Chiapas, Guatemala, and Honduras

(N = 664). All analyses were run with the model param-

eter defaults (admixture model with allele frequencies

correlated among populations and no prior sample infor-

mation) with a burnin of 150,000 generations followed by

an additional 150,000 generations. Between three to six

independent runs were conducted for each value of K

tested. While the DK method (implemented in STUCTURE

HARVESTER; Earl and vonHoldt 2012) was used to

assess the optimal K value (Evanno et al. 2005) for each

dataset, other values of K that corresponded to potential

geographic barriers or biologically relevant factors were

also considered and are reported below.

The Bayesian assignment program GENELAND 4.0.5

was also used to assess population structure (Guillot et al.

2012). Six analyses (Table 1) designed to test the influence

of geographic and morphometric data on the program’s

assignment of individuals to distinct genetic groups were run

with the following parameters for 1,000,000 iterations with

every 1,000th iteration saved: maximum rate of Poisson

process at 100; uncertainty on spatial coordinates of 1;

uncorrelated allele frequency, null allele and spatial models.

Ten independent runs were computed for each analysis for K

values from one to ten. The iteration with the highest log

likelihood after successive burnin values of 100, 200, 300,

400 and 500 was chosen as the best fit to the data and the

MCMCplot for that iterationwas independently examined to

determine stationarity and burnin for the results.

Geometric morphometric analysis

Imaging and landmark mapping

The left forewing was removed and mounted in glycerol on

glass slides with glass slipcovers. All slide-mounted wings

were imaged at 10X with a Leica microscope camera

(DFC425) in Leica Application Suite 3.8.0. After the order

of specimen images was randomized using tpsUtil 1.64

(Rohlf 2015b), the coordinates of twenty landmarks on the

forewing (Online Resource 2) were mapped on the images

using tpsDIG2.22 (Rohlf 2015a). C. Petranek removed,

mounted and imaged all wings and mapped all landmark

coordinates to ensure that landmarks were placed in the

same location and to avoid researcher bias in the mapping

of the landmarks.

MorphoJ analyses

The program MorphoJ1.06d (Klingenberg 2011) was used

for all post-processing analyses of the landmark coordinate
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dataset. A Procrustes fit was performed to scale, rotate and

superimpose landmark data across specimens, thereby

eliminating all variation due to non-shape differences

among individuals. A regression was then conducted with

Procrustes coordinates (representing shape) as the depen-

dent variable and log centroid size (an approximation of

size) as the independent variable. To control for any size-

based shape variation (allometry), the residuals from this

regression were used for further analysis. To test whether

wing shape variation corresponded to genetic differentia-

tion, a canonical analysis of variance (CVA) was con-

ducted. Each specimen was assigned to a haplotype group

based on its genotypic assignment in the STRUCTURE

analysis ([50% assignment to a STRUCTURE-determined

K group using the K = 6 result from the analysis of the

entire population genetic dataset [N = 1917]) and these

groups were used as the classifier variables for the CVA. A

permutation test for 1000 iterations was run to test the

significance of the difference in mean shape between

haplotype groups. Leave-one-out cross validation tests

were also conducted on all pairwise comparisons of groups

via discriminant function analysis (DFA) to assess the

reliability of assignment of individuals to a haplotype

group based on wing shape. CVA and DFA differ in that

the CVA examines the relative separation of groups using

the pooled variance -covariance matrix, while DFA

examines the separation of each pair of groups using only

the covariance matrices of the two groups in question for

each comparison. CVA therefore focuses on the degree to

which groups differ from one another, while DFA focuses

on the degree of difference between groups and the prob-

ability of correct group membership for each specimen.

Although CVA and DFA are robust to unequal sample size

when the number of variables is high (in this case, 20

landmarks), the sample size of the Costa Rican lineage

(N = 17) was much smaller than the sample size for all

other haplotype groups, so CVA was also run on a ran-

domly reduced dataset in which each haplotype group had

an equal sample size of N = 17.

Results

COI phylogenetic relationships and concordance

with genotypic divergences

Bayesian analysis of Bombus ephippiatus and B. wilmattae

COI sequence data (Fig. 2a; Online Resource 3) recovers

six major polytomous clades. All B. ephippiatus from north

of the IT and a subset of B. ephippiatus from south of the

IT to Honduras form one clade (Fig. 2a; clade i), with the

Honduran B. ephippiatus and Mexican B. ephippiatus north

of the IT basal to the Mexican samples south of the IT and

Guatemala (Fig. 2a; clade ii). Five additional clades are

recovered (Fig. 2a; clades iii–vii), each structured by spe-

cies and geographic distribution.

The parsimony haplotype network of the COI sequence

fragment data (Fig. 3) is highly congruent with the Baye-

sian phylogeny. All strongly supported clades from the

phylogeny correspond with distinct haplotype groups in the

network (Fig. 3). The most divergent lineage in the net-

work is the group from Costa Rica, with four steps sepa-

rating it from a haplotype of B. wilmattae (Fig. 3). Clade

iii, iv and v from the phylogeny are also distinct in the

haplotype network (Fig. 3). Differences between groups in

the network are also reflected in the pairwise FST (Online

Resource 4) between clades and the average number of

nucleotide differences between and among clades in the

phylogeny (Online Resource 5). Both distance measures

demonstrate high divergence of Costa Rican individuals.

Table 1 Summary of the six

analyses run in GENELAND
DNA GPS MORPH N MEX NUC

CA

N burnin K (logLk)

1 ? ? ? ? ? 606 300 8 (81,607.2106)

2 ? ? ? ? 606 200 8 (-24,524.6806)

3 ? ? ? ? 281 200 3 (40,686.0608)

4 ? ? ? 1229 450 5 (-42,727.4268)

5 ? ? ? ? 310 200 5 (40,414.5477)

6 ? ? ? 624 300 6 (-26,724.7870)

If a ‘‘?’’ is indicated under ‘‘GPS,’’ a spatial dataset was included in the analysis that consisted of the GPS

coordinates for each specimen in UTM format. If ‘‘?’’ is indicated under ‘‘MORPH,’’ a phenotype dataset

was included in the analysis that consisted of the regression residuals of the 20 Procrustes superimposed

landmark coordinates for each sample. ‘‘N’’ indicates the total sample size for each analysis and ‘‘burnin’’

indicates the number of iterations discarded before the MCMC chain reached stationarity (we assessed this

individually for each analysis). Under ‘‘K (logLk)’’ are the K values for the replicates with the highest log

likelihood values with their corresponding log likelihood values (after burnin) in parentheses
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Fig. 2 a Bayesian phylogeny of 811 bp of the COI locus for 254

samples of B. ephippiatus, B. wilmattae and their sister species. All

nodes in the phylogeny are colored according to their assignment in

b STRUCTURE analysis of 12 microsatellite loci from the same

samples. Individuals in the STRUCTURE graph are ordered and

labeled by species designation and geographic location. (Color

figure online)
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High divergences also separate the different sympatric

clades from south of the IT to Honduras (Online Resource

4; Online Resource 5).

A STRUCTURE analysis of microsatellite genotype data

for samples that were also sequenced for COI (Fig. 2b) was

also conducted for a direct comparison of the COI phylogeny

(Fig. 2a) and haplotype network (Fig. 3). Using DK criteria,

K = 4 is the best fit to the genotype data (Online Resource

6). The genetic groups recovered from this analysis are

largely congruent with the results of the Bayesian phylogeny

and the haplotype network, and correspond to geographic

subclades (Figs. 2, 3). The only strong incongruence

between the datasets is the mixed assignment of the Costa

Rican individuals in the STRUCTURE analysis. While

STRUCTURE could not assign the Costa Rican samples to a

single K cluster, they all belong to the well-supported clade

vi in the phylogeny (Fig. 2) and fell out as a distinct group in

the haplotype network (Fig. 3).

Fig. 3 Parsimony haplotype network of 811 bp of the COI locus for

samples of B. ephippiatus and B. wilmattae. The size of the circles is

relative to the number of samples possessing each haplotype and

black dots along connection lines represent steps. Each haplotype is

colored to the assignment of each sample in the STRUCTURE

analysis of 12 microsatellite loci from the same samples presented in

Fig. 2. Grey-shaded areas represent samples with COI sequence data

that lack microsatellite data. (Color figure online)
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Species delimitation with bGMYC

Outgroups (B. huntii, B. vosnesenskii, and B. impatiens) are

assigned low posterior probabilities of belonging to the

same species (PP = 0.00–0.50; Online Resource 7). Phy-

logenetic clades ii–vii receive low/moderate probability of

being conspecific (PP = 0.50–0.90; Online Resource 7)

when compared to each other. Within clade i not all taxa

are assigned to the same species (Online Resource 7). B.

ephippiatus from Mexico North of the IT are all assigned to

the same species as each other, but eight taxa from that

region area also assigned to the same species as clade ii,

while the other seven taxa area assigned low/moderate

probability of belonging to the same species as clade ii

(Online Resource 7). The uncertain species determination

of the taxa in clade i coincides with their polytomous

placement within the clade in the Bayesian phylogeny

(Fig. 2) as well as their multiple connections within the

haplotype network (Fig. 3).

Genetic groups inferred from STRUCTURE

analyses of the microsatellite genotype data

Using the DK criteria, K = 5 was the best fit for the

complete genotype dataset (n = 1917) (Online Resource

8). The K groups assigned are highly congruent with

geographic location. Cluster A (Fig. 4) predominates

throughout the Sierra Madre Occidental, but also occurs in

high frequency in samples from the western region of the

Trans-Mexican Volcanic Belt where these two mountain

ranges overlap (Fig. 4). Cluster B (Fig. 4) is found

throughout the eastern side of Mexico in the Sierra Madre

Oriental, the Sierra Madre del Sur and the eastern region of

the Trans-Mexican Volcanic Belt. While the samples from

the Trans-Mexican Volcanic Belt share genotypes with

mountain ranges in the far western and eastern portions of

the region, a distinct cluster C (Fig. 4) occurs in the middle

of the range. The genetic structure presented in this anal-

ysis corresponds to the mountains of Mexico, but there are

signatures of gene flow in samples where these mountain

chains connect and overlap (Fig. 4).

The genotypic composition of B. ephippiatus and B.

wilmattae in Nuclear Central America (Nuc CA) and south

of the IT through Honduras was distinct from populations

north of the IT (Fig. 4). Two distinct sympatric clusters

occur within Nuc CA: one that includes B. ephippiatus

from south of the IT through Honduras (Fig. 4, cluster D)

and another that includes B. ephippiatus from Mexico

south of the IT and Honduras and all samples of B.

wilmattae from south of the IT (Fig. 4, cluster E).

Cluster E (Fig. 4) separates into two groups in the

smaller STRUCTURE analysis of samples with COI data

(Fig. 2b) and is placed in multiple lineages in the COI

phylogeny (Fig. 2a); the larger analysis of all samples

identifies one panmictic cluster at higher values of K.

While DK criteria selected K = 5 for this dataset, K = 6

suggests further genetic structure corresponding to the

mountain ranges of Mexico (Online Resource 9); a new

cluster (cluster F) is revealed that corresponds to the Sierra

Madre Oriental and the eastern sides of the Trans-Mexican

Volcanic Belt and the Sierra Madre del Sur. The net

nucleotide distances between the clusters at K = 6 (Online

Resource 10) imply that cluster E (B. wilmattae and B.

ephippiatus from Nuc CA) and cluster D (B. ephippiatus

from Nuc CA) are most divergent from the populations

north of the IT. The northwestern Sierra Madre Oriental

(cluster A) and the southern Sierra Madre del Sur (cluster

B) also exhibit high differentiation (Online Resource 10).

Both the large analysis and the smaller analysis using

samples with COI sequence data (Fig. 2b) did not always

assign Costa Rican individuals to a single cluster, so a

separate analysis with all sample sizes equal to that for

Costa Rica (N = 17 for each of the seven main regions; see

Methods; Online Resource 11) was run. At successive K

values from 2 to 7, Costa Rica is defined as a distinct

lineage from K = 5–7 (Online Resource 11). For K = 2–4,

Costa Rica is grouped with the samples from Nuc CA

(Online Resource 11).

A separate analysis with the samples from Nuc CA was

also run (N = 664; Online Resource 12). Across K values,

cluster D from the larger analysis remains the same, but

cluster E separates into smaller groups (Online Resource

12). The results from K = 2 mirror those of the analysis

containing all (N = 1917) samples; the samples separate

into the same two clusters from the larger dataset. At

K = 3, cluster E is separated into one group of B. ephip-

piatus and B. wilmattae from Chiapas and a second group

of B. wilmattae from Chiapas and Guatemala and B.

ephippiatus from Honduras (Online Resource 12). At

K = 4, cluster E split into one group of B. ephippiatus

from Chiapas, a group of B. wilmattae from Chiapas and a

third group of B. wilmattae from Chiapas and Guatemala

and B. ephippiatus from Honduras (Online Resource 12).

At K = 5, cluster E is split into four groups: a group of B.

ephippiatus from Chiapas, a group of B. wilmattae from

Chiapas, a group of B. wilmattae from Chiapas and Gua-

temala and a fourth group of B. ephippiatus from Honduras

(Online Resource 12; Online Resource 13).

Genetic groups inferred from the GENELAND

analyses of the microsatellite genotype data

The analysis of all samples with wing morphometric data

and genotype data (scenario 1 in Table 1) reveals eight

distinct genetic clusters (Fig. 5). Two groups are differ-

entiated north of the IT; the samples from the Sierra Madre
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Occidental separate into a cluster (8) distinct from the rest

of Mexico north of the IT (4; Fig. 5). A single distinct

group is assigned to the individuals from Costa Rica (7;

Fig. 5). In Nuc CA, five groups are assigned to the samples

(1, 2, 3, 5, 6; Fig. 5). When compared to the STRUCTURE

analysis of all samples, GENELAND differentiates less

genetic groups north of the IT and more genetic groups

south of the IT (Online Resource 14).

When the morphometric data are excluded from the

analysis (scenario 2 in Table 1; Online Resource 15), the

results are largely congruent with those that include mor-

phometric data, with some minor differences (Online

Resource 16). Because the results of scenario 1 and 2 are

similar, the pairwise comparison of scenario 2 to the

STRUCTURE analysis (Online Resource 17) yield similar

results, with STRUCTURE identifying more groups north

of the IT and fewer groups south of the IT (Online

Resource 17).

GENELAND analyses of the samples from north of the

IT with morphometric data (scenario 3) and without mor-

phometric data (scenario 4) reveal three and five groups,

respectively (Table 1), which correspond to geography. In

scenario 3 (Online Resource 18), Sierra Madre Oriental,

the Trans-Mexican Volcanic Belt and the eastern edge of

the Sierra Madre del Sur form a group, the Sierra Madre

del Sur and southeastern Trans-Mexican Volcanic Belt

form a group, and the Sierra Madre Occidental is a distinct

group. These groups also correspond to the same regions

identified by STRUCTURE (Online Resource 19). When

morphometric data are excluded (scenario 4), five genetic

groups are identified by GENELAND (Online Resource

20). Group 1 occurs in the Sierra Madre del Sur, group 2

occurs in the Sierra Madre Oriental through to the eastern

Sierra Madre del Sur, group 3 occurs in the Sierra Madre

Occidental, group 4 occurs in the western Trans-Mexican

Volcanic Belt and southern Sierra Madre Occidental and

group 5 occurs in the Trans-Mexican Volcanic Belt (Online

Resource 20). These groups are also highly congruent with

the STRUCTURE clusters assigned to these samples

(Online Resource 21).

When the samples from Nuc CA are analyzed sepa-

rately, five groups are identified with morphometric data

(scenario 5; Online Resource 22) and 6 groups are identi-

fied without morphometric data (scenario 6; Online

Resource 23). With the exception of a few outlier samples,

the five groups identified with morphometric data largely

correspond to the five STRUCTURE groups identified in

the analysis of the Nuc CA samples (Online Resource 24;

Fig. 4 Results from the K = 5 STRUCTURE analysis of the

microsatellite genotype data for all samples. Samples are separated

by mountain range and ordered either North to South or East to West

depending on the orientation of the mountain range. The inset map

has WWF (Olson et al. 2001) ecoregions colored according to the

genetic cluster assignment of the majority of samples present within

each region. (Color figure online)
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Online Resource 12). When morphometric data are

excluded (scenario 6; Online Resource 23), a sixth group is

added and the distribution of samples among groups cor-

responds less so to the STRUCTURE results (Online

Resource 25).

Morphological divergence inferred from wing

morphometric data

A CVA of all morphometric data (N = 606) with samples

classified by their genotype assignment reveals that wing

shape difference between each pair of haplotype groups is

statistically significant (Online Resource 26) and 67.36%

of the variation in the data is explained in the first two

canonical variates (Online Resource 27). All samples are

correctly identified to their pre-assigned group via pairwise

DFA except when cluster B (Sierra Madre del Sur) is

compared to cluster F (Sierra Madre Oriental) (Online

Resource 26). Costa Rica is most divergent in wing shape

from all other haplotype groups (Online Resource 26;

Online Resource 27). The Nuc CA lineage with both B.

ephippiatus and B. wilmattae (cluster E) is the second most

different from all groups (Online Resource 26; Online

Resource 27). Of the three haplotype groups south of the

IT, the Nuc CA group (cluster D) containing B. ephippiatus

is the least different in wing shape from the samples north

of the IT (Online Resource 26; Online Resource 27), which

also reflects its close relationship to the group north of the

IT, as shown in the COI phylogeny (Fig. 2a). The Sierra

Madre Oriental and the Sierra Madre del Sur are the least

different in wing shape (Online Resource 26). This close

relationship is also reflected in the STRUCTURE analyses

(Online Resource 10).

The CVA with equal samples sizes (N = 17 for each

haplotype group; N = 119 total) demonstrates the same

patterns seen in the larger dataset, with 72.55% of the

variation in the data explained by the first two canonical

variates (Table 2; Fig. 6). The only substantial difference

between the results of the analyses is that no pairwise

comparison between haplotypes north of the IT has a

greater Mahalanobis distance than the comparisons

between haplotypes south of the IT (Table 2). In the larger

analysis, the Mahalanobis distance between the most

northern (Sierra Madre Occidental) and the most southern

(Sierra Madre del Sur) haplotypes north of the IT is greater

than any comparison of the Nuc CA group (cluster D)

containing B. ephippiatus to any haplotype group north of

the IT (Table 2).

Fig. 5 Map displaying the geographic distribution of each genetic lineage identified by GENELAND for scenario 1 (Table 1). Grey-shaded

areas of the map represent WWF (Olson et al. 2001) ecoregions in which the species can be found. (Color figure online)
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Discussion

Utility of methods for species delimitation

Mitochondrial and nuclear sequence data have been widely

used to examine Bombus genetic diversity worldwide

(Koulianos and Schmid-Hempel 2000; Kawakita et al.

2004; Hines et al. 2006; Cameron et al. 2007; Williams

et al. 2012, 2015), and also regionally in Europe (Ellis et al.

2005; Lecocq et al. 2011; Carolan et al. 2012; Lecocq et al.

2013, 2015a, b, c; Bossert et al. 2016), Asia (Williams et al.

2011; Hines and Williams 2012; Huang et al. 2015), South

America (Santos Júnior et al. 2015; Françoso et al. 2016),)

and North America (Cameron and Williams 2003; Shef-

field et al. 2016). Population, landscape, and conservation

genetic studies of Bombus (Europe: Chapman et al. 2003;

Ellis et al. 2006; Darvill et al. 2006, 2010; Herrman et al.

2007; Kraus et al. 2009, 2011; Charman et al. 2010;

Goulson et al. 2011; Carvell et al. 2012; Maebe et al. 2013;

Dreier et al. 2014; United States: Lozier and Cameron

2009; Cameron et al. 2011; Lozier et al. 2011, 2013; Jha

and Kremen 2013; Jha 2015) as well population genetics

research on invasive Bombus species (New Zealand:

Schmid-Hempel et al. 2007; Lye et al. 2011) have utilized

microsatellite genotype data extensively to examine pat-

terns of gene flow and isolation. In comparison, few studies

have used sequence data and microsatellites in concert to

examine species-level and population-level patterns of

genetic structure (Europe: Estoup et al. 1996; Widmer et al.

1998; Widmer and Schmid-Hempel 1999; Moreira et al.

2015; Asia: Shao et al. 2004; South America: Francisco

et al. 2016); a single study to date has investigated bumble

bee genetic diversity in Mexico and Central America

(Duennes et al. 2012).

In this study, one of our aims was to balance evidence of

older divergence patterns based on sequence data with

more recent patterns of gene flow and isolation using fas-

ter-evolving microsatellite genotypes to provide a more

robust inference of species delineation in the B. ephippia-

tus–B. wilmattae complex. The COI phylogeny and hap-

lotype network presented here are largely congruent with

the patterns present in the microsatellite genotype data, but

there is evidence of contemporary gene flow in clusters D

and E and contemporary genetic isolation in Mexico north

of the IT that would not have been discerned from COI

sequence data alone. The species delimitation model

Table 2 Pairwise Mahalanobis

distances between haplotypes

groups calculated by MorphoJ

for equal sample size haplotype

groups (N = 17 for each

haplotype group, N = 119 total)

Mahalanobis distance A B

8.4982a Sierra Madre del Sur Costa Rica

8.3784a Sierra Madre Oriental Costa Rica

8.1556a Trans-Mexican Volcanic Belt Costa Rica

7.2092a Sierra Madre Occidental Costa Rica

6.3474a Nuc CA (eph/wilm) Costa Rica

6.1282a Sierra Madre del Sur Nuc CA (eph/wilm)

6.0663a Nuc CA (eph) Costa Rica

5.9101a Trans-Mexican Volcanic Belt Nuc CA (eph/wilm)

5.7076a Sierra Madre Oriental Nuc CA (eph/wilm)

5.3348a Sierra Madre Occidental Nuc CA (eph/wilm)

5.165a Nuc CA (eph) Nuc CA (eph/wilm)

4.9026a Sierra Madre Occidental Nuc CA (eph)

4.7405a Sierra Madre del Sur Nuc CA (eph)

4.6114a Trans-Mexican Volcanic Belt Nuc CA (eph)

4.3754a Sierra Madre Oriental Nuc CA (eph)

4.3493a Sierra Madre del Sur Sierra Madre Occidental

3.9552a Trans-Mexican Volcanic Belt Sierra Madre del Sur

3.8866a Sierra Madre Oriental Sierra Madre Occidental

3.3786a Trans-Mexican Volcanic Belt Sierra Madre Occidental

3.2525a Trans-Mexican Volcanic Belt Sierra Madre Oriental

2.3874b Sierra Madre del Sur Sierra Madre Oriental

Comparisons are ordered from most to least different

Nuc CA Nuclear Central America, eph, B. ephippiatus, wilm, B. wilmattae
a The permutation test P value was\ 0.0001
b The permutation test P value was\ 0.05
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bGMYC assigned low posterior probabilities of conspeci-

ficity to the major clades in the COI phylogeny, but could

not discern sublineages that, in separate analyses, display a

complete lack of gene flow at microsatellite loci. Previous

research has reported similar assignment problems with

bGMYC and attributed it to introgression and incomplete

lineage sorting within sequence data of butterfly taxa

(Talavera et al. 2013). The recent diversification of B.

ephippiatus–B. wilmattae (*1 mya; Duennes et al. 2012)

and the conflicting inferences between sequence data and

microsatellite data suggest that incomplete lineage sorting

and/or introgression are confounding sequence data in this

Fig. 6 Graph of the canonical analysis of variance conducted on

equal samples sizes from each region (N = 119). All samples are

color-coded according to their genotypic assignment by the K = 6

analysis of all samples (N = 1917). Nuc CA (eph) Nuclear Central

America B. ephippiatus, Nuc CA (eph/wilm) Nuclear Central America

B. ephippiatus and B. wilmattae. (Color figure online)
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group as well. While sequence data can be useful for

delimiting bumble bee species with older divergences and

species delimitation models can aid in choosing a threshold

for species identification, future studies of recently

diverging groups should consider independent lines of

evidence (in addition to sequence data) that can provide a

robust examination and estimation of contemporary gene

flow between lineages (Schlick-Steiner et al. 2010).

Microsatellite genotype data provide detailed informa-

tion on genetic diversity and gene flow within this com-

plex, but we have demonstrated that caution should be

taken when using genotype assignment programs to assess

genetic diversity with microsatellites. The difficulty

STRUCTURE had in assigning the Costa Rican samples to

a single cluster, except when samples from all regions were

reduced to equal those of Costa Rica, illustrates a pitfall in

using the STRUCTURE algorithm to assign unequal pop-

ulation samples to genetic groups (Kalinowski 2011).

However, GENELAND, which incorporates geospatial

data, readily identifies Costa Rica as a unique genetic

group in an analysis of all samples with morphometric data

included and excluded. The results from GENELAND do

not change notably when sample sizes are changed or

samples are excluded, but fewer populations are identified

by GENELAND when morphometric data are included in

the analysis.

The analyses of the Nuc CA region show that

STRUCTURE and GENELAND can differ substantially in

their assignments. STRUCTURE consistently identifies

cluster D as distinct from all other samples from Nuc CA,

regardless of the K value being tested; this suggests that

there is little to no gene flow between these lineages. In

contrast, GENELAND does not identify cluster D as a

unique lineage, suggesting admixture throughout Nuc CA.

When a map of the groups assigned by GENELAND is

compared to a map of the STRUCTURE assignments, it is

clear that GENELAND weights geographic proximity

much greater than genotype when assigning samples to

groups. The ability to include spatial and phenotypic

information suggests that GENELAND provides a more

holistic picture of evolutionary history, yet here GENE-

LAND appears to prioritize geospatial data over genetic

data when multiple cryptic, sympatric lineages are included

(i.e. populations deviate from Hardy–Weinberg

equilibrium).

This study also aimed to include non-molecular methods

as additional evidence towards the delineation of unique

groups. Discriminant function analysis of landmark data

indicates significant differences in wing shape between all

but one pair of genetic lineages and returned high hit ratios

for cross-validation tests. While one can use discriminant

analyses such as CVA and DFA to reliably differentiate

between user-specified groups, these tests can detect

significant differences even when the magnitude of mor-

phological shape difference is miniscule, potentially sup-

plying weak information for phylogenetic inference.

Lecocq et al. (2015b) implemented a non-discriminant

analysis (Schlick-Steiner et al. 2010) of bumble bee wing

morphometric data to avoid the bias implicit to designating

a priori species hypotheses, but the results suggested that

all lineages within the Bombus lapidarius species complex

were not distinguishable by wing shape. The results of

Lecocq et al. (2015b) could therefore be explained by

convergent or stabilizing selection on wing shape (Dockx

2007). However, the efficacy of non-discriminant methods

should be further explored by examining wing shape

divergence in other well-supported groups of bumble bees,

as analyzing landmark data without a priori hypotheses

may lack the statistical rigor to tell groups apart (Mutanen

and Pretorius 2007).

Biogeographic patterns

When the results of our three independent datasets are

considered as a whole, the B. ephippiatus lineage in Costa

Rica is highly divergent from the rest of the complex.

Analyses of all datasets identified the Costa Rican samples

as a distinct group, with the exception of some STRUC-

TURE analyses. The strong differentiation of the Costa

Rican lineage suggests that the Nicarguan Depression is an

important isolating mechanism for this species complex, as

has been demonstrated in several vertebrate taxa (Castoe

et al. 2009; Daza et al. 2010; Gutiérrez-Garcı́a and Váz-

quez-Domı́nguez 2013).

For such a small region, Nuclear Central America (south

of the IT and north of the ND) contains a remarkable

amount of genetic diversity. The volcanoes and mountains

chains in this region have generated a mosaic of unique

habitats across elevations, which in turn led to high levels

of diversification for many taxa (Strecker et al. 2004;

Crawford and Smith 2005; Gutiérrez-Garcı́a and Vázquez-

Domı́nguez 2012; Suárez-Atilano et al. 2014; Pérez and

Vázquez-Domı́nguez 2015). The separation of clade ii

Chiapas and Guatemala samples from the Honduras sam-

ples at the base of clade i, despite being placed into the

same K cluster in the STRUCTURE analysis of the

genotype data, suggests that this might be a case of sec-

ondary contact in which the ancestral distribution arose

south of the IT, dispersed into northern Mexico and then

dispersed south, back across the IT, introgressing with the

ancestral population in the mid-elevation Central American

pine-oak forests (Fig. 1). The large amount of COI genetic

diversity (also present in the microsatellite data) in the four

groups comprising cluster E provides further support for

the hypothesis that these bees have been in Nuc CA much

longer than the taxa comprising cluster D. These lineages,
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which correspond to the high elevation Chiapas montane

forest, Sierra Madre de Chiapas, and Central American

montane forest ecoregions (Fig. 1), might even represent

the ancestral range of the group with retention of ancestral

polymorphism. The cluster E subgroups also show that the

Central Depression might restrict gene flow between pop-

ulations, a result that could not have been discerned from

the smaller sampling of Duennes et al. (2012). Divergence

estimates from Duennes et al. (2012) suggest that both of

these possible scenarios could have occurred during

Pleistocene glacial cycles; studies across animal and plant

taxa inhabiting montane regions of Mexico and Central

America suggest multiple dispersal events across the IT

have occurred during the late Pliocene and Pleistocene

(Barber and Klicka 2010; Ornelas et al. 2013).

Bombus ephippiatus in Mexico north of the IT also

contain substantial genetic differentiation that corresponds

with the elevation barriers imposed by the mountain ranges

of this region. In contrast to Nuclear Central America,

pine-oak forests are continuous throughout north Mexican

mountains and converge with other ranges via subalpine

forests. Gene flow between these distinct populations is

greatest where the separate mountain chains meet each

other; this pattern has been found in other taxa within the

region (Ornelas et al. 2013; Mastretta-Yanes et al. 2015).

While geographic distance seems to have a strong impact

on differentiation in northern Mexico where mountain

chains and habitat are more continuous, habitat and ele-

vation seem to be a more important isolating mechanism in

Nuclear Central America.

While some population genetic studies of Bombus have

found less genetic variation across much larger geographic

areas (Lozier et al. 2011; Moreira et al. 2015; Francisco

et al. 2016), other research reveals population structure

within bumble bee species. Multiple studies suggest that

oceanic barriers between island and mainland populations

have facilitated genetic differentiation within bumble bees

(Widmer et al. 1998; Shao et al. 2004; Darvill et al.

2006, 2010; Kraus et al. 2009; Charman et al. 2010; Lye

et al. 2011; Goulson et al. 2011; Lozier et al. 2011; Hines

and Williams 2012; Jha 2015; Moreira et al. 2015; Lecocq

et al. 2015c; Williams et al. 2015; Francisco et al. 2016).

Like the lineages in this complex (Duennes et al. 2012),

many bumble bee species also exhibit genetic differentia-

tion corresponding to unique eco-regions across latitudi-

nal/longitudinal and elevational space, implying that

mountainous regions in concert with glacial refugia are

responsible for generating this diversity (Widmer and

Schmid-Hempel 1999; Hines and Williams 2012; Lecocq

et al. 2013, 2015; Lozier et al. 2013; Santos Júnior et al.

2015; Françoso et al. 2016; Sheffield et al. 2016).

Conservation implications

Upon the discovery of cryptic diversity, species once

thought to have wide distributions and to be of least

concern for conservation can actually comprise multiple

species with contracted ranges and small population sizes

that are in need of conservation (Bickford et al. 2007;

Funk et al. 2012; Niemiller et al. 2012, 2013). Currently,

B. ephippiatus is listed as ‘‘least concern’’ by the Inter-

national Union for the Conservation of Nature (IUCN)

Red List of Threatened Species (B. wilmattae was con-

sidered conspecific for this assessment; Duennes and

Vandame 2015). In light of the genetic and morphometric

patterns we see here, a taxonomic revision of this species

complex will be important, as well as a subsequent con-

servation status assessment: a reassessment for the IUCN

Red List could result in different risk categorizations for

each species within this complex. We strongly encourage

phylogenetic and population genetic studies of the other

seventeen species (Labougle 1990) present in Mexico and

Central America to develop more accurate and effective

conservation assessments for these important native pol-

linators inhabiting fragile cloud forest habitat (Ornelas

et al. 2013).

Within Mexico alone, twelve independent companies

across five different states are rearing B. ephippiatus for

commercial pollination of greenhouse crops (Asociación

Mexicana de Criadores de Abejorros Nativos, A.C.).

Although raising B. ephippiatus as a native species is a

more sustainable alternative to the non-native North

American B. impatiens currently used for commercial

pollination in Mexico and Central America, the inter-re-

gional movement of B. ephippiatus colonies with unique

population structure could be detrimental to the other three

un-described species in this complex as well as to native

population diversity within northern Mexico. Not only does

their movement pose the threat of facilitating the spread of

potential diseases (the same B. ephippiatus specimens used

for this study demonstrated relatively high pathogen

infection compared to other Mexican Bombus spp.; Gallot-

Lavallée et al. 2016), but commercial B. ephippiatus could

outcompete native populations for resources and even

cause genetic pollution of the native populations through

interbreeding (Goulson 2010; Kraus et al. 2011; Williams

et al. 2012). The results presented here demonstrate that B.

ephippiatus exhibits substantial population structure across

its range and we suggest that bombiculture companies

restrict the movement of colonies to within the distinct

mountain ranges of Mexico and not move colonies between

ranges, thereby preserving the native diversity across the

species’ range.
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Consequences for species delimitation

The genetic and morphometric results presented here

demonstrate that a taxonomic revision of the B. ephippia-

tus–B. wilmattae complex is needed. Mexico north of the

IT is clearly a distinct taxonomic unit with genetically

unique populations in the Sierra Madre Occidental, Sierra

Madre Oriental, Sierra Madre del Sur and the Trans-

Mexican Volcanic Belt. There are at least two sympatric

taxonomic units from Mexico south of the IT to Honduras,

with one of these lineages containing the previously rec-

ognized B. wilmattae as well as substantial population

structure corresponding to the Central Depression. A fourth

distinct taxonomic unit inhabits Costa Rica, and presum-

ably also Panama based on the consistent color pattern

phenotype present through these regions. The results pre-

sented here highlight the importance of thorough investi-

gations of cryptic species diversity for the conservation of

native species.
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Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF,

Steinke D (2012) Colour patterns do not diagnose species:

quantitative evaluation of a DNA barcoded cryptic bumblebee

complex. PLoS ONE 7(1):e29251

Castoe TA, Daza JM, Smith EN, Sasa MM, Kuch U, Campbell JA,

Chippindale PT, Parkinson CL (2009) Comparative phylogeog-

raphy of pitvipers suggests a consensus of ancient Middle

American highland biogeography. J Biogeogr 36:88–103

Chapman RE, Wang J, Bourke AFG (2003) Genetic analysis of

spatial foraging patterns and resource sharing in bumble bee

pollinators. Mol Ecol 12:2801–2808

Charman TG, Sears J, Green RE, Bourke AFG (2010) Conservation

genetics, foraging distance and nest density of the scarce Great

Yellow Bumblebee (Bombus distinguendus). Mol Ecol

19:2661–2674

Clement M, Posada D, Crandall K (2000) TCS: a computer program

to estimate gene genealogies. Mol Ecol 10:1657–1660

Cracraft J, Prum RO (1988) Patterns and processes of diversification:

speciation and historical congruence in some Neotropical birds.

Evolution 42:603–620

Crawford A, Smith E (2005) Cenozoic biogeography and evolution in

direct-developing frogs of Central America (Leptodactylidae:

Eleutherodactylus) as inferred from a phylogenetic analysis of

nuclear andmitochondrial genes.Mol Phylogenet Evol 35:536–555

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2:

more models, new heuristics and parallel computing. Nat

Methods 9:772

Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure

and inbreeding in a rare and declining bumblebee, Bombus

muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611

Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D

(2010) Cryptic differences in dispersal lead to differential

sensitivity to habitat fragmentation in two bumblebee species.

Mol Ecol 19:53–63

Daza JM, Castoe TA, Parkinson CL (2010) Using regional compar-

ative phylogeographic data from snake lineage to infer historical

processes in Middle America. Ecography 33:343–354

Dockx C (2007) Directional and stabilizing selection on wing size and

shape in migrant and resident monarch butterflies, Danaus

plexippus (L.), in Cuba. Biol J Linn Soc 92:605–616

Dorn PL, Calderon C, Melgar S, Moguel B, Solorzano E, Dumonteil E,

Rodas A, de la Rua N, Garnica R, Monroy C (2009) Two distinct

Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in

Guatemala and Mexico. PLoS Neglect Trop Dis 3:e393

Dreier S, Redhead JW, Warren IA, Bourke AFG, Heard MS, Jordan

WC, Sumner S, Wang J, Carvell C (2014) Fine-scle spatial

genetic structure of common and declining bumble bees across

an agricultural landspace. Mol Ecol 23:3384–3395

Conserv Genet (2017) 18:553–572 569

123



Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian

phylogenetics with BEAUti and BEAST 1.7. Mol Biol Evol

29:1969–1973

Duennes MA, Vandame R. 2015. Bombus ephippiatus. The IUCN Red

List of Threatened Species. e.T21215149A21215217. doi:10.

2305/IUCN.UK.2015-4.RLTS.T21215149A21215217.en. Down-

loaded on 29 March 2016

Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geograph-

ical patterns of genetic divergence in the widespread Mesoamer-

ican bumble bee Bombus ephippiatus (Hymenoptera: Apidae).

Mol Phylogenet Evol 64:219–231

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a

website and program for visualizing STRUCTURE output and

implementing the Evanno method. Conserv Genet Resour

4:359–361

Edgar RC (2004) MUSCLE: multiple sequence alignment with high

accuracy and high throughput. Nucl Acids Res 32:1792–1797

Ellis JS, Knight ME, Goulson D (2005) Delineating species for

conservation using mitochondrial sequence data: the taxonomic

status of two problematic Bombus species (Hymenoptera:

Apidae). J Insect Conserv 9:75–83

Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low

effective population sizes, genetic structuring and reduced

genetic diversity in a threatened bumblebee species, Bombus

sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386
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Entomólgica Mexicana 64:55–72

570 Conserv Genet (2017) 18:553–572

123

http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T21215149A21215217.en
http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T21215149A21215217.en


Lecocq T, Lhomme P, Michez D, Dellicour S, Valterová Rasmont P
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